1,492 research outputs found

    Manipulation of spin dephasing in InAs quantum wires

    Full text link
    The spin dephasing due to the Rashba spin-orbit coupling, especially its dependence on the direction of the electric field is studied in InAs quantum wire. We find that the spin dephasing is strongly affected by the angle of Rashba effective magnetic field and the applied magnetic field. The nonlinearity in spin dephasing time versus the direction of the electric field shows a potential evenue to manipulate the spin lifetime in spintronic device. Moreover, we figure out a quantity that can well represent the inhomogeneous broadening of the system which may help us to understand the many-body spin dephasing due to the Rashba effect.Comment: 4 pages, 3 figure

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change

    Absence of singular superconducting fluctuation corrections to thermal conductivity

    Full text link
    We evaluate the superconducting fluctuation corrections to thermal conductivity in the normal state which diverge as T approaches T_c. We find zero total contribution for one, two and three-dimensional superconductors for arbitrary impurity concentration. The method used is diagrammatic many-body theory, and all contributions -- Aslamazov-Larkin (AL), Maki-Thompson (MT), and density-of-states (DOS) -- are considered. The AL contribution is convergent, whilst the divergences of the DOS and MT diagrams exactly cancel.Comment: 4 pages text; 2 figure

    Some remarks on the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians

    Full text link
    We consider the problem of minimising the kkth eigenvalue, k≥2k \geq 2, of the (pp-)Laplacian with Robin boundary conditions with respect to all domains in RN\mathbb{R}^N of given volume MM. When k=2k=2, we prove that the second eigenvalue of the pp-Laplacian is minimised by the domain consisting of the disjoint union of two balls of equal volume, and that this is the unique domain with this property. For p=2p=2 and k≥3k \geq 3, we prove that in many cases a minimiser cannot be independent of the value of the constant α\alpha in the boundary condition, or equivalently of the volume MM. We obtain similar results for the Laplacian with generalised Wentzell boundary conditions Δu+β∂u∂ν+γu=0\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0.Comment: 16 page

    Singular open book structures from real mappings

    Full text link
    We prove extensions of Milnor's theorem for germs with nonisolated singularity and use them to find new classes of genuine real analytic mappings ψ\psi with positive dimensional singular locus \Sing \psi \subset \psi^{-1}(0), for which the Milnor fibration exists and yields an open book structure with singular binding.Comment: more remark

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    A Connection between Twistors and Superstring Sigma Models on Coset Superspaces

    Full text link
    We consider superstring sigma models that are based on coset superspaces G/H in which H arises as the fixed point set of an order-4 automorphism of G. We show by means of twistor theory that the corresponding first-order system, consisting of the Maurer-Cartan equations and the equations of motion, arises from a dimensional reduction of some generalised self-dual Yang-Mills equations in eight dimensions. Such a relationship might help shed light on the explicit construction of solutions to the superstring equations including their hidden symmetry structures and thus on the properties of their gauge theory duals.Comment: v3: 16 pages, typos fixed and minor clarifications adde

    B^F Theory and Flat Spacetimes

    Full text link
    We propose a reduced constrained Hamiltonian formalism for the exactly soluble B∧FB \wedge F theory of flat connections and closed two-forms over manifolds with topology Σ3×(0,1)\Sigma^3 \times (0,1). The reduced phase space variables are the holonomies of a flat connection for loops which form a basis of the first homotopy group π1(Σ3)\pi_1(\Sigma^3), and elements of the second cohomology group of Σ3\Sigma^3 with value in the Lie algebra L(G)L(G). When G=SO(3,1)G=SO(3,1), and if the two-form can be expressed as B=e∧eB= e\wedge e, for some vierbein field ee, then the variables represent a flat spacetime. This is not always possible: We show that the solutions of the theory generally represent spacetimes with ``global torsion''. We describe the dynamical evolution of spacetimes with and without global torsion, and classify the flat spacetimes which admit a locally homogeneous foliation, following Thurston's classification of geometric structures.Comment: 21 pp., Mexico Preprint ICN-UNAM-93-1

    Results from Bottomonia Production at the Tevatron and Prospects for the LHC

    Get PDF
    We extend our previous analysis on inclusive heavy quarkonia hadroproduction to the whole Upsilon(nS) (n=1,2,3) resonance family. We use a Monte Carlo framework with the colour-octet mechanism implemented in the PYTHIA event generator. We include in our study higher order QCD effects such as initial-state emission of gluons and Altarelli-Parisi evolution of final-state gluons. We extract some NRQCD colour-octet matrix elements relevant for Upsilon(nS) (n=1,2,3) hadroproduction from CDF data at the Fermilab Tevatron. Then we extrapolate to LHC energies to predict prompt bottomonia production rates. Finally, we examine the prospect to probe the gluon density in protons from heavy quarkonia inclusive hadroproduction at high transverse momentum and its feasibility in LHC general-purpose experiments.Comment: LaTeX, 30 pages, 30 EPS figure

    Spin relaxation time, spin dephasing time and ensemble spin dephasing time in nn-type GaAs quantum wells

    Full text link
    We investigate the spin relaxation and spin dephasing of nn-type GaAs quantum wells. We obtain the spin relaxation time T1T_1, the spin dephasing time T2T_2 and the ensemble spin dephasing time T2∗T_2^{\ast} by solving the full microscopic kinetic spin Bloch equations, and we show that, analogous to the common sense in an isotropic system for conduction electrons, T1T_1, T2T_2 and T2∗T_2^{\ast} are identical due to the short correlation time. The inhomogeneous broadening induced by the D'yakonov-Perel term is suppressed by the scattering, especially the Coulomb scattering, in this system.Comment: 4 pages, 2 figures, to be published in Phys. Lett.
    • …
    corecore